

3. INCLUSION-EXCLUSION PRINCIPLE

To read:

- [1] 2.2.1. Induction, 2.3. Inclusion-Exclusion.
- [3] 3.7. Inclusion - Exclusion, 3.8. The hat-check lady.

3.1. Inclusion-exclusion principle.

Theorem 3.1. (*Inclusion-Exclusion principle*). *Let A_1, \dots, A_n be finite sets. Then, the following holds*

$$\left| \bigcup_{i=1}^n A_i \right| = \sum_{1 \leq i \leq n} |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j| + \sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n|.$$

Proof. Suppose that an element $a \in \bigcup_{i=1}^n A_i$ belongs to exactly k different sets.

How many times did we count a in the inclusion-exclusion formula

$$\sum_{1 \leq i \leq n} |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j| + \sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k| - \dots ?$$

Element a is counted $(-1)^{\ell-1} \binom{k}{\ell}$ times in the ℓ -th sum as ℓ goes from 1 to n . By the binomial theorem we have

$$\sum_{\ell=1}^n (-1)^{\ell-1} \binom{k}{\ell} = 1.$$

Therefore, each element a is counted exactly once. This finishes the proof. \square

3.2. Number of permutations without fixed points. A hat-check girl completely loses track of which of n hats belong to which owners, and hands them back at random to their n owners as the latter leave. What is the probability p_n that nobody receives their own hat back?

This question can be reformulated in the following way: find the number of permutations of the set $\{1, 2, \dots, n\}$ without fixed points. In order to count these, we apply the inclusion-exclusion principle. Let A be the set of all permutations and A_i be the set of permutations of the set $\{1, 2, \dots, n\}$ for which i is a fixed point. The number of permutations with no fixed points is

$$|A| - \left| \bigcup_{i=1}^n A_i \right|.$$

We know that $|A| = n!$, so we need to count $|\bigcup_{i=1}^n A_i|$. We do this using the inclusion principle. Note that $A_i \cap A_j$ represents the set of all permutations for which i and j are fixed points. One can see that $|A_i| = (n-1)!$ for all i , while $|A_i \cap A_j| = (n-2)!$. Using the same idea, we obtain $|A_i \cap A_j \cap A_k| = (n-3)!$ and so on. Altogether, this gives

$$\begin{aligned} |A| - \left| \bigcup_{i=1}^n A_i \right| &= n! - \binom{n}{1} (n-1)! + \binom{n}{2} (n-2)! - \dots \\ &= n! - \frac{n!(n-1)!}{1!(n-1)!} + \frac{n!(n-2)!}{2!(n-2)!} - \dots \\ &= n! \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \dots \right) \\ &\approx n! \exp(-1). \end{aligned}$$

Thus we see that the probability p_n that nobody receives their own hat back is

$$p_n = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!}$$

As n goes to infinity this number converges to $\frac{1}{e} \approx 0.37$.

3.3. Euler's totient function. In number theory, Euler's totient function $\phi(n)$ counts the positive integers up to a given integer n that are relatively prime to n . For example, among the numbers $\{1, 2, 3, 4, 5, 6\}$ only 1 and 5 are coprime to 6. Therefore, we find that $\phi(6) = 2$. If p is a prime number then $\phi(p) = p - 1$ and $\phi(p^k) = p^k - p^{k-1}$.

Proposition 3.2. *Suppose that a number n has the prime factorization $n = p_1^{k_1} \cdots p_m^{k_m}$. Then by the inclusion-exclusion principle we find*

$$\phi(n) = n - \sum_{1 \leq i \leq m} \frac{n}{p_i} + \sum_{1 \leq i < j \leq m} \frac{n}{p_i p_j} - \sum_{1 \leq i < j < k \leq m} \frac{n}{p_i p_j p_k} + \dots = n \prod_{i=1}^m \left(1 - \frac{1}{p_i}\right).$$

Proof. Let A be the set of all numbers in $[n]$ not coprime with n .

Let A_i be the set of all numbers in $[n]$ divisible by p_i .

Then $A = \bigcup_{i=1}^m A_i$ and $|A_i| = \frac{n}{p_i}$, $|A_i \cap A_j| = \frac{n}{p_i p_j}$, and so on. By the inclusion-exclusion formula we find

$$\begin{aligned} \phi(n) &= n - |A| \\ &= n - \sum_{1 \leq i \leq m} \frac{n}{p_i} + \sum_{1 \leq i < j \leq m} \frac{n}{p_i p_j} - \sum_{1 \leq i < j < k \leq m} \frac{n}{p_i p_j p_k} + \dots = n \prod_{i=1}^m \left(1 - \frac{1}{p_i}\right). \end{aligned}$$

□

Acknowledgements: I thank Prof. Janos Pach for designing this course and Dr. Matthew de Courcy-Ireland for sharing his lecture notes.

REFERENCES

- [1] Discrete Mathematics (L. Lovasz, J. Pelikan , K. Vesztergombi);
- [2] Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability (B. Bollobas);
- [3] Invitation to Discrete Mathematics (J. Matousek, J. Nesetril).
- [4] Extremal combinatorics (S. Jukna).
- [5] Combinatorial theory (M. Hall), Blaisdell publishing company, 1967.