3. INCLUSION-EXCLUSION PRINCIPLE

To read:
[1] 2.2.1. Induction, 2.3. Inclusion-Exclusion.
[3] 3.7. Inclusion - Exclusion, 3.8. The hat-check lady.

3.1. Inclusion-exclusion principle.

Theorem 3.1. (Inclusion-FExclusion principle). Let A1, ..., Ay be finite sets. Then, the follow-
tng holds
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Proof. Suppose that an element a € |J;; A; belongs to exactly k different sets.
How many times did we count a in the inclusion-exclusion formula
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Element a is counted (—1)¢~! (';) times in the ¢-th sum as ¢ goes from 1 to n. By the binomial

theorem we have
- k
—D)H (7 ) =1
>eu (4

/=1
Therefore, each element a is counted exactly once. This finishes the proof. [

3.2. Number of permutations without fixed points. A hat-check girl completely loses
track of which of n hats belong to which owners, and hands them back at random to their n
owners as the latter leave. What is the probability p, that nobody receives their own hat back?

This question can be reformulated in the following way: find the number of permutations

of the set {1,2,...,n} without fixed points. In order to count these, we apply the inclusion-
exclusion principle. Let A be the set of all permutations and A; be the set of permutations of
the set {1,2,...,n} for which 7 is a fixed point. The number of permutations with no fixed
points is
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We know that |A| = n!, so we need to count || J;__; A;|. We do this using the inclusion principle.
Note that A; N A; represents the set of all permutations for which ¢ and j are fixed points. One
can see that |A4;| = (n — 1)! for all 4, while |4; N A;| = (n — 2)!. Using the same idea, we obtain
|A;NA;j N Ag| = (n— 3)! and so on. Altogether, this gives
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Thus we see that the probability p, that nobody receives their own hat back is

1 1 1 nl
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As n goes to infinity this number converges to % ~ 0.37.

n!

3.3. Euler’s totient function. In number theory, Euler’s totient function ¢(n) counts the
positive integers up to a given integer n that are relatively prime to n. For example, among the
numbers {1,2,3,4,5,6} only 1 and 5 are coprime to 6. Therefore, we find that ¢(6) = 2. If p is
a prime number then ¢(p) = p — 1 and ¢(pF) = p* — pF~ 1.

Proposition 3.2. Suppose that a number n has the prime factorization n = p’fl .o.pFm. Then
by the inclusion-exclusion principle we find
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Proof. Let A be the set of all numbers in [n| not coprime with n.
Let A; be the set of all numbers in [n] divisible by p;.
Then A = J;~, A; and |4;] = o [AiNA; | = pinj’ and so on. By the inclusion-exclusion formula
we find
¢(n) =n — [A]
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